- Johnson S, Imai S. NAD+ biosynthesis, aging, and disease. F1000Res. 2018;7:132.
- Cantó C, Menzies KJ, Auwerx J. Nad+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metabolism. 2015;22(1):31-53.
- Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and nad+ metabolism in human tissue. Polymenis M, ed. PLoS ONE. 2012;7(7):e42357.
- Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiology of Aging. 2013;34(6):1581-1588.
- Frederick DW, Loro E, Liu L, et al. Loss of nad homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metabolism. 2016;24(2):269-282.
- Imai S, Guarente L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. npj Aging Mech Dis. 2016;2(1):16017.
- Trammell SAJ, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7(1):12948.
- Lee HJ, Hong Y-S, Jun W, Yang SJ. Nicotinamide riboside ameliorates hepatic metaflammation by modulating nlrp3 inflammasome in a rodent model of type 2 diabetes. Journal of Medicinal Food. 2015;18(11):1207-1213.
- Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis. 2010;5(1):253-295.
- Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. In: Yao T-P, Seto E, eds. Histone Deacetylases: The Biology and Clinical Implication. Vol 206. Springer Berlin Heidelberg; 2011:125-162.
- Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. Journal of Leukocyte Biology. 2013;93(5):669-680.
- Guarente L. Calorie restriction and sirtuins revisited. Genes & Development. 2013;27(19):2072-2085.
- Mendelsohn AR, Larrick JW. The nad+/parp1/sirt1 axis in aging. Rejuvenation Research. 2017;20(3):244-247.
- Grube K, Burkle A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proceedings of the National Academy of Sciences. 1992;89(24):11759-11763.
- Sweeney G, Song J. The association between PGC-1α and Alzheimer’s disease. Anat Cell Biol. 2016;49(1):1.
- Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139:216-231.
- Chen X, Stern D, Yan SD. Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res. 2006;3(5):515-520.
- Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011;35(2):320-330.
- Schöndorf DC, Ivanyuk D, Baden P, et al. The nad+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in ipsc and fly models of parkinson’s disease. Cell Reports. 2018;23(10):2976-2988.
- Know your risk for heart disease | cdc. Gov. Centers for Disease Control and Prevention.
- Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522-530.
- Martens C, Denman B, Mazzo M, et al. Naa1 nicotinamide riboside supplementation reduces aortic stiffness and blood pressure in middle-aged and older adults: ARTRES. 2017;20(C):49.
- Crisol BM, Veiga CB, Lenhare L, et al. Nicotinamide riboside induces a thermogenic response in lean mice. Life Sciences. 2018;211:1-7.
- Djouder N. Boosting NAD +for the prevention and treatment of liver cancer. Molecular & Cellular Oncology. 2015;2(4):e1001199.
- Son MJ, Ryu J-S, Kim JY, et al. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells. Exp Mol Med. 2